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Die tetraedrische Zwischenstufe RC(OH)XY 3 bei Um-
setzungen von Carbonsäurederivaten RC(O)X 1 mit Nucleo-
philen YH 2 zu RC(O)Y 4 (Reaktion a) in Schema 1) ist

Schema 1. Reaktion von Carbonsäurederivaten 1 mit Nucleophilen YH 2
(a) und R'M 5 (b). R�H, Alkyl, Aryl; X�Hal, SR, OR, NR2; YH�
R''SH, R''OH, R''NH2; R''�H, Alkyl, Aryl; R'�Alkyl, Aryl; M�Li,
MgX etc.

wegen ihrer fundamentalen Bedeutung unter anderem bei In-
vivo-Acylierungen bis heute Gegenstand intensiver Unter-
suchungen.[1] Erst kürzlich konnte in einem sehr speziellen
Fall die Festkörperstruktur eines (protonierten) intramoleku-
laren Amin-Adduktes an eine Carbonsäure ermittelt werden.[2]

Auch bei Umsetzungen von 1 mit metallorganischen
Verbindungen R'M 5 wird eine tetraedrische Zwischenstufe
6 durchlaufen (Reaktion b) in Schema 1). Während 6 im Falle
von X�Hal, SR und OR aufgrund einer sehr schnellen 1,2-
Eliminierung von MX den entsprechenden Aldehyd bzw. das
Keton 7 bildet, die mit 5 weitere Reaktionen eingehen, ist die
Zwischenstufe 6 im Falle von X�NR2 stabiler, was zur
Herstellung von Ketonen 7 (1� 5!6 ; 6�H3O�!7)[3] sowie
zum Schutz von Aldehyden und Ketonen (7�MNR2!6)[4]

verwendet wird. Wie sind die Bindungsverhältnisse insbe-
sondere am tetraedrischen C-Atom in einer Verbindung des
Typs 6? Die Kristallstruktur von [(Ph)2(NMe2)C(OLi) ´
THF]2 10,[5] das aus Benzoesäure-N,N-dimethylamid 8 und
Phenyllithium 9 hergestellt und aus Tetrahydrofuran/Diethyl-
ether kristallisiert wurde [Gl. (1)], beantwortet diese Frage
(Abbildung 1).

Abbildung 1. Struktur von 10 im Kristall. Wichtige Bindungslängen [pm]
und -winkel [8]: C1-O1 137.1(2), C1-N1 150.0(3), C1-C4 154.8(3), C1-C10
154.9(3), Li1-N1 375.1(4), Li1-N1A 373.7(4), O1-C1-N1-C2 ÿ58.4(2), O1-
C1-N1-C3 63.8(2), C4-C1-N1-C2 65.3(2), C10-C1-N1-C3 ÿ60.8(2).

In der dimeren Struktur sind die Li-Atome Li1 und Li1A an
die anionischen O-Atome O1 und O1A und jeweils an das
O-Atom eines THF-Moleküls (O2 bzw. O2A) gebunden, so
daû die beiden Li-Kationen die seltene Dreifachkoordination
aufweisen. Die C1-O1-Bindung ist 137.1(2) pm lang. Das
entspricht der C-O-Bindungslänge in einem a-Alkoxyamin
(137 pm).[6] In (CH3)3C-OLi ist die C-O-Bindung 139.2 pm
lang.[7] In Amiden wie 8 beträgt die C�O-Bindungslänge
123.1 pm[8] und in aromatischen Ketonen 123.0 pm.[8] Die C1-
N1-Bindung weist eine Länge von 150.0(3) pm auf. Im oben
erwähnten a-Alkoxyamin wurden 149 pm ermittelt.[6] Csp3-N-
Bindungen sind im Mittel 146.9 pm lang.[8] In Carbonsäure-
amiden ist die C-N-Bindung deutlich kürzer (134.6 pm).[8] Für
die Bindungen von C1 an die Phenylring-C-Atome wurden
154.8(3) (C4) und 154.9(3) pm (C10) gemessen. C-C-Bindun-
gen eines aromatischen C-Atoms an ein Csp3-Atom betragen
im Mittel 151.3 pm.[8] Somit sind die Bindungen von C1 zu C4,
C10 und N1 etwas verlängert, während die C1-O1-Bindung
geringfügig verkürzt ist.

Dunitz, Bürgi und Shefter untersuchten die geometrischen
Reaktionskoordinaten der intramolekularen Annäherung
von Amin- bzw. Alkohol-Nucleophilen an Carbonylgruppen
bis hin zur tetraedrischen Zwischenstufe (z.B. 1� 2> 3).[9] In
Einklang mit diesen Untersuchungen zeigt die Struktur von
10 den Beginn einer analogen Rückreaktion, der 1,2-Elimi-
nierung von LiNMe2 (der besten Austrittsgruppe in 10), unter
Bildung von Benzophenon. Dies läût sich den oben erwähn-
ten Bindungslängen C1-N1 und C1-O1 entnehmen. Auch die
Winkel zwischen der C1-C4-C10-Ebene und den Vektoren
C1-N1 (60.38) sowie C1-O1 (52.88) lassen dies erkennen:
Während sich N1 entlang der Trajektorie aus 10 entfernt,
bewegt sich O1 auf die C1-C4-C10-Ebene zu.

Interessant ist auch die Konformation der Dimethylamino-
gruppen, deren N-Atome nicht an die dreifach koordinierten
Li-Ionen gebunden sind, was normalerweise günstig ist.[10] So
beträgt der Li1-N1-Abstand 375.1(4) pm und der Li1-N1A-
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Abstand 373.7(4) pm, während Li-N-Bindungen ca. 200 pm
lang sind.[11] Für eine Wechselwirkung des freien Elektronen-
paars an N1 und N1A mit Li1 und Li1A müûten die
Aminogruppen in 10 um ca. 1808 gedreht sein, was anhand
der Torsionswinkel O1-C1-N1-C2 ÿ58.4(2)8, O1-C1-N1-C3
63.8(2)8, C4-C1-N1-C2 65.3(2)8 und C10-C1-N1-C3 ÿ60.8(2)8
deutlich wird. Dies würde jedoch zu ungünstigen ekliptischen
Konformationen der Methylgruppen an N1 und N1A mit den
Phenylgruppen an C1 und C1A führen. Hinzu kommt, daû die
freien Elektronenpaare der N-Atome in 10 die ideale Kon-
formation für eine Wechselwirkung mit dem s*-Orbital der
C-O-Bindungen einnehmen (anomerer Effekt[12]). Das Wech-
selspiel von N ´´´ Li-Komplexierung, konformativer Spannung
und anomerem Effekt wird durch die Daten in Tabelle 1
verdeutlicht, in der berechnete Bindungslängen, -winkel und
relative Energien der Verbindungen 11 ± 15 in den Kon-
formationen A und B wiedergegeben sind.

So weist 11 B gegenüber 11 A (dessen Konformation um die
C-N-Bindung derjenigen in 10 entspricht) eine um
8.0 kcal molÿ1 höhere Energie auf. Der anomere Effekt in
11 A macht sich in den Bindungslängen bemerkbar: In 11 A ist
die C-O-Bindung länger (137.0 pm) und die C-N-Bindung
kürzer (153.2 pm) als in 11 B (135.9 bzw. 159.0 pm). ¾hnliches
beobachtet man bei den Verbindungen 12 ± 15.[13] Interessan-
terweise sind die Torsionswinkel O-C-N-R3 (ÿ158.08) und
O-C-N-R4 (73.38) in 11 B nahezu ebenso groû wie die entspre-
chenden Winkel in einem jüngst untersuchten a-Aminoli-
thiumalkoxid (158.9 und ÿ71.78 bzw. 154.9 und ÿ73.98).[14]

Zur Vermeidung von ekliptischen Wechselwirkungen bei der
Li-O-C-N-Vierringbildung findet somit eine Drehung um die
C-N-Bindung statt. Wird die konformative Spannung geringer
(11!12!13!14), verringert sich die Destabilisierung in
den Konformeren B über 4.3 kcal molÿ1 (12 B) auf
1.5 kcal molÿ1 (13 B). Bei 14 ist das B-Isomer ÿ2.7 kcal molÿ1

stabiler als 14 A, und die Torsionswinkel O-C-N-R3 und O-C-
N-R4 betragen ideale ÿ120.18 bzw. 121.18. In 15 ist B noch
stabiler als A (ÿ4.5 kcal molÿ1). Die bei 15 ebenfalls ermittel-
ten MP2-Werte der Konformere A und B belegen, daû in
Tabelle 1 der Trend richtig wiedergegeben wird.

Fazit: Aus den Bindungslängen und -winkeln am tetra-
edrischen C1(C1A)-Atom in 10 wird die Tendenz zur 1,2-
Eliminierung von LiNMe2 unter Bildung von Benzophenon
sichtbar, obwohl der 10 stabilisierende anomere Effekt dem
entgegenwirkt.

Experimentelles

Eine Lösung von 500 mg (3.35 mmol) N,N-Dimethylbenzamid in 60 mL
Diethylether wurde unter Argon bei Raumtemperatur mit 1.86 mL
(3.35 mmol) einer 1.8n Phenyllithiumlösung in Cyclohexan/Diethylether
versetzt. Der weiûe Niederschlag wurde unter Argon zweimal mit je 10 mL
Diethylether gewaschen und anschlieûend in 10 mL THF gelöst. Von dieser
Lösung wurden 4 mL mit 2 mL Diethylether versetzt und bei ÿ16 8C 8 h
gelagert. Danach wurden farblose rhombische Kristalle erhalten (121 mg;
44% Ausbeute). 1H-NMR (200 MHz, [D8]THF, 298 K): d� 7.78 (4H), 7.12
(4H), 6.93 (2 H), 2.20 (6H); 13C-NMR (50 MHz, [D8]THF, 298 K): d�
154.6, 128.0, 127.6, 125.2, 94.3,[16] 39.7.
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Tabelle 1. Berechnete Bindungslängen [pm], Torsionswinkel [8] und relative Energien [kcal molÿ1] der Konformere A und B der Verbindungen 11 ± 15
(RHF/3-21G//PM3). MP2/6-31�G*//MP2/6-31�G*-Werte von 15 sind in Klammern angegeben.

Verb. R1 R2 R3 R4 C-O C-N O-C-N-R3 O-C-N-R4 Erel

11A Ph Ph Me Me 137.0 153.2 58.4 ÿ 70.9 0.0
11B Ph Ph Me Me 135.9 159.0 ÿ 158.0 73.3 8.0
12A Ph H Me Me 136.7 152.0 59.2 ÿ 71.1 0.0
12B Ph H Me Me 135.4 157.2 ÿ 146.4 86.0 4.3
13A H H Me Me 136.5 150.4 64.9 ÿ 65.8 0.0
13B H H Me Me 134.9 156.7 ÿ 117.3 116.6 1.5
14A H H H H 136.9 148.4 58.7 ÿ 61.3 0.0
14B H H H H 135.2 154.5 ÿ 120.1 121.1 ÿ 2.7
15A Me Me H H 138.3 150.4 59.9 ÿ 60.2 0.0

(139.3) (147.1) (56.7) (ÿ56.7) (0.0)
15B Me Me H H 136.2 155.9 ÿ 126.0 115.2 ÿ 4.5

(137.3) (154.8) (ÿ129.7) (112.5) (ÿ6.0)
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Die Bergman-Reaktion ist eine bekannte Methode zur
Herstellung benzoider Verbindungen durch thermische Cy-
cloaromatisierung von Hexa-1,5-diin-3-en-Verbindungen.[1, 2]

Bislang sind nur wenige photochemische Beispiele bekannt,
die allerdings auf arylverknüpfte Endiine beschränkt sind.[3±5]

Eine Photo-Bergman-Reaktion aliphatischer Endiine könnte
eine wichtige Rolle in der Chemie der 1,4-Didehydrobenzole
(p-Benz-in) spielen, weil sie bei niedriger Temperatur durch-
geführt werden kann und so die Charakterisierung der
reaktiven Zwischenstufen ermöglicht.[6] Wir berichten hier
über die erfolgreiche Photo-Cycloaromatisierung einiger
aliphatischer Endiine.

Ausgehend von unseren Arbeiten zur Synthese neunglied-
riger cyclischer Endiine[7] haben wir zunächst die Photoreak-
tion von 1,2-Diethinylcyclopenten-Derivaten 1 untersucht.
Dabei sollte 3 photochemisch über das 1,4-Didehydrobenzol-
Intermediat 2 gebildet werden (Schema 1). Eine entgaste

Schema 1. Plausibler Verlauf der Photo-Bergman-Reaktion. R2�TBS�
tert-Butyldimethylsilyl.

Lösung von 1 a[8] in Hexan wurde in einem Quarzkolben 6 h
bei Raumtemperatur mit einer Quecksilberniederdrucklampe
(4� 20 W) bestrahlt. Das Endiin 1 a verschwand vollständig,
das aromatische Produkt 4 a wurde jedoch nur in sehr geringer
Ausbeute (3 %) erhalten, und das neungliedrige Endiin 3
(R1�H) konnte nicht nachgewiesen werden (Tabelle 1).
Weder 1 b[8] noch 1 c[8] mit sterisch anspruchsvollen Substi-
tuenten am Alkinende bildeten unter den gleichen Reak-
tionsbedingungen Indanderivate, vielmehr isolierte man na-
hezu quantitativ die Ausgangsverbindungen. Erst das Dipro-
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